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The analog computer was once the leading-edge tool for
dynamic simulation and vibration analysis. Now, it is an al-
most forgotten relic of technical history. Yet, this old war-horse
still has important lessons to teach the new S&V practitioner!
This article puts a new spin on an aging technology and pro-
vides an interesting “learn-by-doing” experience for young
readers with a sense of intellectual curiosity and an experi-
mental bent. It serves to narrow the communications gap be-
tween mechanical and electronic engineers and technicians
by demonstrating the similarity of their respective efforts.

Data Physics Corporation is a sea of bright, industrious pro-
grammers; it is quite natural that I have made many friends
among them. I recently shared a cup of coffee with one young
fellow while he took a break from exercising the “wonders of
Windows®” and I enjoyed the respite from designing a sales/
training simulator. I casually asked him, “Have you ever
worked with an analog computer?” I was not prepared for his
response. “I’ve never heard of that brand!,” he said. Although
it would have been a great comedic one-liner, this young Com-
puter Scientist was deadly serious . . . he had never heard of
an analog computer.

I pondered this response during a long plane ride and came
to realize that I was among the fortunate few engineers whose
age placed his practice in overlap with the “golden age” of
analog computation. Since the analog computer had such a
profound and positive effect on my career both as a vibration
analyst and as an instrumentation engineer, I recognized an
obligation to reintroduce this important piece of our past to
younger readers of Sound and Vibration. In essence, you bright
folks were cheated by a fluke of time’s passage and I would like
to try to minimize your loss.

I was introduced to the analog computer during an under-
graduate course in differential equations and had a chance to
‘dabble’ with one during a subsequent vibration lab/course. It
was my very good fortune to study these topics with the former
Chief Engineer of MB Electronics, Professor Thomas Warner,
who conveyed them with sufficient enthusiasm and detail to
set the course of my life’s work.

My introduction to the “real world” of vibration analysis took
place at Sikorsky Aircraft where I initially labored in Dr. Ray
Carlson’s Airframe Dynamics Group. I shared the harness with
some truly skilled applied mathematicians (Drs. Art Jacobon,
Cliff Astill, Bernie Traphan and Robert Johnston) who were
kind enough to give “the kid” a solid introduction to math-
ematical modeling of structures and systems. Sikorsky also
gave me an introduction to the digital computer, then still in
its infancy. I “cut” a lot of punch cards to feed our twin Univac
1108s in that era. Many of these were inputs for Mimic, a For-
tran-derived simulation language that tried to emulate an ana-
log computer.

Several years later, I came to work for a real analog simula-
tion laboratory at General Motors Proving Ground. I was
mentored by a gifted engineer who really understood analog
computation and was provided with all the “right stuff” to
perform meaningful work. I was introduced to the “industrial
strength” analog computer and later to the hybrid computer on
which I built my first FFT system. It was a great learning ex-
perience.

In later years, I called upon these lessons to help resolve
digital algorithm development problems. At Nicolet Scientific,
Fox Technology and Liberty Technologies we built dedicated
analog simulators to provide the “code cutters” with well un-
derstood problems against which to test their measurement
algorithms. At all three companies, we also built sales-support

simulators to allow our “sales troops” to do a more time-effi-
cient and complete job of demonstrating the superiority of our
high-technology products. In both applications, analog simu-
lation provided exactly the right answer to a nagging and ex-
pensive problem.

What Is an Analog Computer and How Is It Used?
An analog computer (see Figure 1) is a collection of elec-

tronic components that may be interconnected in such man-
ner as to produce a defined set of time-variant voltages, each
analogous (and proportional) to a dependent variable in a group
of equations to be solved simultaneously. These machines are
naturally disposed toward the solution of differential equations
where time is the independent variable. Thus, the simulation
of structural vibration problems is a ‘natural’ for these ma-
chines.

Analog computers produce continuous signals; there is no
concept of sample-rate involved in their basic operation. The
computed variables are not quantized; there is no concept of
“word-length” in an analog computer. All computations take
place simultaneously, continuously and in real-time; there are
no “dependent sequence” issues to be dealt with – all variables
are always current and available. These characteristics are very
desirable in a simulation or modeling tool.

However, the analog computer has some stringent restric-
tions on its computations. All computed variables must fall
within the full-scale voltage span of the machine’s amplifiers.
This requires appropriate voltage scaling (subsequently dis-
cussed by example) to assure that each variable utilizes the
available voltage span effectively. Since the computation volt-
age span is fixed, each variable has only a limited dynamic
range. Further, all coefficients used in the equations must be
positive and must also be scaled to fall within the range of zero-
to-one. The precision of any coefficient is ultimately deter-
mined by the tolerance of components within the computer.

The computation is accomplished by component subsystems
that are naturally governed by the mathematical operation they
perform. At the risk of oversimplification, we will concentrate
on the “big three” subsystems that dominate the solution of
ordinary differential equations with constant coefficients.
These are the (inverting) ‘Summer,’ the (inverting) ‘Integrator’
and the coefficient Potentiometer or ‘Pot.’ These components
are represented schematically in Figure 2 and discussed in
detail in the “How Summers, Integrator and Pots Work” sidebar.

Let’s presume we want to use these elements to solve the
forced-response of a single degree-of-freedom spring/mass/
damper system. The equation to be solved is the familiar non-
homogeneous, ordinary, linear differential equation with con-
stant coefficients:

where X is the displacement of mass m supported by a spring
of stiffness k and a viscous damper of rate c and F is an exter-
nal force applied to the mass. The “over-dots” represent dif-
ferentiation with respect to time (in Newtonian notation). Since
we are interested in the forced-response (the complementary
integral), we may assume all of the initial conditions are equal
to zero.

The method of solution (often called the “bootstrap method”)
is elegant in its simplicity. We implement a solution for the
equation’s highest derivative (d2X/dt2 in this case). This result
is a summation of terms, each involving the dependent vari-
able X and/or the lower order derivatives of X and constant
coefficients. Multiple integrations (two in this case) of this
result provide X and its remaining derivatives. These terms are

Analog was not a Computer Trademark!
Why Would Anyone Write About Analog Computers In Year 2000?

George Fox Lang , Data Physics Corporation, San Jose, California
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“fed back” to the initial computation (through constant coeffi-
cient potentiometers) as inputs. Where necessary, additional
summers are used as signal inverters so that all voltage inputs
have the required sign.

We start by solving (1) for the highest derivative of X (the
acceleration). Specifically:

We recognize that the velocity can be found by integrating
the result of (2). That is:

We further recognize that integrating the velocity of (3) re-
sults in the displacement, or:

Clearly, Equation (2) can be implemented by a Summer and
three coefficient potentiometers. The excitation voltage F is an
available external input. The dX/dt and X voltages are com-
puted in accordance with Equations (3) and (4) by using Inte-
grators. Proper (inverted) signal sense is obtained by using
additional Summers as sign inverters. These motional terms
and the fixed coefficients 1/m, c/m and k/m are all that is re-
quired to satisfy the initial summation of (2) and we can thus
solve the equation with the obvious ‘loop’ circuit shown in
Figure 3.

We can also solve this problem with the more compact cir-
cuit of Figure 4. Here we have ‘traded’ the availability of the
acceleration (and positive velocity) signals for a reduced hard-
ware solution. This is clearly advantageous if the acceleration
signal is not explicitly required. We have also gained a less
obvious advantage – the circuit of Figure 4 is usable over a
broader range of frequency than that of Figure 3, because the
acceleration is not explicitly formed. (More about this, later.)

It is worth noting two common characteristics of Figures 3
and 4. First, the path from the F input to the X output is non-
inverting in both cases because the signal path contains an even
number of inverting amplifiers. That is, applying a positive
force produces a positive displacement. Second, every closed
loop within both models contains an odd number of inverting
amplifiers in the signal path. That is, every feedback path in-
troduces a stabilizing negative feedback. A retarding force is
applied to the mass in reaction to its instantaneous displace-
ment and velocity. In contrast, positive feedback loops (those
with an even number of amplifiers) tend to destabilize the sys-
tem leading it to saturate at “full-scale” when a small distur-
bance is applied. Since the system we are simulating is stable,
its analog must also exhibit this property!

The circuits of Figures 3 and 4 demonstrate the simplicity
of the ‘bootstrap’ method. Since we are dealing with simulta-
neous voltages that are continuous signals, there are no “se-
quence details” to be attended to (as there must be in a time
sampled digital implementation of Equations (2), (3) and (4)).
Nor do we need to be concerned with how well the integration
is approximated by a discrete summation; the integrations are
perfect natural operations. However, our model is not yet com-
plete. There are still several important matters of scaling to be
attended to. We must scale the involved variables to fall within
the voltage span of the computer amplifiers and we must scale
the coefficients to fall within the zero-to-one restriction of the
potentiometers. These matters are discussed in detail in the
ensuing example.

Computer programming (of any type) is only efficiently
implemented when it is approached systematically. Analog
programming is no different from digital programming in this
philosophical regard. The most important aspect of the activ-
ity is planning what to ‘code’ or ‘patch’ – the least important
is the actual authoring of statements or the interconnection of
components. Fail to plan the effort before embarking on imple-
mentation and you will, at best, be doomed to languish in an
unnecessary resurrection period killing ‘bugs’ and making re-
pairs. More likely, you will simply fail to accomplish your
mission within a small multiple of the allotted time.

There are no ‘shortcuts’ to precise analog simulation. As with
digital work, “the devil’s in the details” and you won’t under-
stand those details without the proper preliminary work. In my
opinion, there are eight steps through which you must pass
before reaching for patch panel, bottle-plugs and cables. Try
to shortcut this process and your simulation will surely be a
poor mimic of the “real world.”

Ask any “old-timer” about programming an analog computer
and he will tell you that conceiving a simulation circuit is
child’s play, but scaling a model properly is the art that sepa-
rates the men from boys. This task is not insurmountable; you
have merely to follow all eight steps, in sequence, to succeed.

The “Down and Dirty” Details of Analog Programming
Figures 8 and 11 show an LDS model V-203 electrodynamic

shaker. This small precise tool is a mainstay of our industry
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Figure 1. A typical analog computer of circa 1960 featured a remov-
able program patch board, banks of ±100 Volt (vacuum tube!) amplifi-
ers and hundreds of coefficient potentiometers plus other support
circuits and accessories. The unit shown is an EAI model 231-R, one of
five such ‘workhorses’ housed at the GMPG Noise and Vibration Labo-
ratory and frequently driven in tandem! The human workhorse is far
more unique; Tom Harris was my boss, mentor and best friend during
my tenure with General Motors.

Figure 2. The big three linear computing elements:  a) Summer accepts
one or more inputs, each with an input gain (×1 or ×10 on most com-
puters). The output voltage is minus the sum of the (gain weighted) input
voltages.  b) Integrator behaves in similar fashion, but the output volt-
age is minus the integral of the weighted input sum plus a specified
Initial Condition (time = 0) voltage. c) Potentiometer multiplies an in-
put voltage by a positive constant less than one (0 ≤ K ≤ 1).

Figure 3. Obvious solution for forced response of spring/mass/damper.

Figure 4. Compact analog solution for forced response of spring/mass/
damper system.
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The following figure shows the schematic of an inverting
summation amplifier or Summer and its analog programming
symbol. This circuit is built of precision resistors and an op-
erational amplifier. ‘Op-amps’ now come 1, 2 or 4 to a ‘chip’
and are very inexpensive. A personal favorite is the NE5514,
which provides 4 high performance op-amps in a 14-pin dual
in-line pack (DIP).

The operational amplifier provides very high voltage gain,
G, from DC to many kilohertz. It also exhibits extremely high
input impedance Z and a near-zero output impedance. These
devices have a differential input and provide a (single-ended)
output voltage proportional to the difference of the voltages
applied to the ‘+’ and ‘–’ input pins. Typical integrated circuit
op-amps require +15 and a –15 volt power supplies and can
provide very satisfactory analog computations within a ±10
Volt range from DC to 20 kHz. They provide no more than about
20 mA of output current, hence programming resistors should
be in the 1 kΩ and higher range. Low-cost 1/4 watt resistors of
1% precision are readily available.

As many as N voltage inputs may be applied to a summing
amplifier. As shown above, a network of resistors feeds the
inverting input of the op-amp. This point in the circuit is
termed the summing junction and it receives currents from the
N input resistors and the output feedback resistor Rfb. This
point in the circuit is at potential esj and the sum of currents
entering and leaving this node must equal zero. Hence, we can
express the current ia entering the inverting input of the op-
amp:

The amplifier’s output is determined by its gain and the
voltages at its differential inputs. The output voltage may be

and it offers a perfect target for analog simulation. Our intent
is to build a model that accurately portrays the electrical and
mechanical characteristics of this machine and its interaction
with a device under test upon it.

The shaker has a compliant suspension of stiffness K and
damping C suspending a load-table of mass M. The table is
driven by a voice-coil of resistance R and inductance L which
applies a force to the table in proportion to coil current i and
the magnetic constant k2. The table motion is resisted by the
reaction force Fr of the test object. The moving coil also gener-
ates a back EMF in proportion to table velocity and the mag-
netic constant k1. The shaker is driven by a voltage ein from a
power amplifier.

The pertinent equations are:

Since we understand the basic physics of our target and can

write the governing differential equations, we are well on our
way to building an analog simulation. However, we need to
know all of the coefficients in the equations, as well as the
expected range of every variable before proceeding. Fortu-
nately, we know a little bit about this shaker, having analyzed
it extensively for the Electrodynamic Shaker Fundamentals
article that appeared in the April 1997 issue of S&V. In particu-
lar, we know:

M = 178.04 × 10–6 lb sec2/in. (Mg = 68.794 × 10–3 lb)
K = 16.54 lb/in.
C = 39.09 × 10–3 lb sec/in.
R = 1.6 Ω
L = 764 µH
K1 = 95.10 × 10–3 Volt/IPS
K2 = 0.8416 lb/A
Stroke = ±100 mil
Maximum Acceleration = ±135 g (use ±100 g full-scale for this
model)
Maximum Force = ±4.4 lb (use ±5 lb full-scale for this model)

stated:

However, the amplifier’s non-inverting input is held at (es-
sentially) ground potential by the bias resistor Rbias. That is:

Because of its very high gain, the amplifier functions to
maintain the summing junction at ground potential and we may
state:

Further, the very high input impedance of the op-amp means
that virtually no current enters its inverting input. That is:

Hence our summing junction current summation collapses
to:

The obvious result is that eout must be minus the gain-
weighted sum of the N applied input voltages ein:

In commercial computers, the gn input gains were set to stan-
dard values (normally 1 and 10) by incorporating input resis-
tors Rn with values of Rf and Rf/10, respectively. In “hand-
patching” a summation amplifier, you are free to select each
Rn for a desired coefficient value.

To minimize DC errors caused by differential currents enter-
ing the amplifier, Rbias should be equal to the parallel equiva-
lent of all resistances connected to the summing junction. That
is:

The folowing figure illustrates the schematic and analog pro-
gramming symbol for an inverting Integrator. The circuit is vir-
tually identical with that of Summer, except that the feedback
element is a low-leakage precision capacitor. (For “home-
grown” integrators, 50-volt polyester capacitors are available
at 2% precision in values up to 1 µF.)

How Summers, Integrator and Pots Work
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The figure above illustrates the schematic and programming
symbol for a coefficient potentiometer. In commercial comput-
ers, expensive 10-turn (linear taper) variable resistors with
calibrated geared dials were employed. For ‘homegrown’ cir-
cuits, inexpensive multi-turn Cermet® trimmers work well.

The current i passing through the potentiometer to ground
is determined by the total resistance of the pot and the applied
input voltage. That is:

The resistance between ground and the potentiometer’s ad-
justable “arm” is determined by the arm’s position. This is set
to provide a resistance of KR, where K is the desired coefficient
(0 ≤ K ≤ 1.0). Thus the output voltage is:

You will note that the assumption was made that no current
flowed from the potentiometer’s arm to the input of an ampli-
fier. This is untrue; the pot always ‘sees’ a load of Rfb or less in
a commercial machine or home-built circuit. To circumvent
this problem, the commercial computers provided a Pot Set
mode in which the input of the potentiometer was temporarily
connected to a “full scale” reference voltage, while the arm’s
output (still attached to its operating load) was measured with
a digital voltmeter. The coefficient was set by reading this
meter, not the expensive multi-turn dial.

You can solve this “pot-loading” problem in another way. An
operational amplifier can be used as a voltage follower, a unity
gain non-inverting amplifier with extremely high input imped-
ance and nearly zero output impedance. It is made by connect-
ing the amplifier’s output to its inverting input and applying
the voltage to be ‘followed’ to its non-inverting input, as shown
above. Since the amplifier draws only an infinitesimal current
from the potentiometer’s arm, the ‘knob’ of the potentiometer
reads K exactly.

Following the same method of analysis, the current enter-
ing the op-amp’s non-inverting input from the summing junc-
tion may be stated:

As in the Summer derivation, the summing junction voltage
esj and the amplifier input current ia are recognized as being
vanishingly small. Thus, the current balance collapses to:

From which the output voltage may be solved, yielding:

In a commercial computer, the Rn values were set equal to
Rfb and Rfb/10 to provide standard input gains gn of 1 and 10.
The capacitor was selected by the Time Scale selector to pro-
vide a β = 1/Rfb C of 1/10, 1, 10 or 100. When fabricating your
own integrator, you can choose from a broader repertoire of Rn
values to achieve the desired integrator gain.

Again, to minimize DC errors caused by differential currents
entering the amplifier, Rbias should be equal to the parallel
equivalent of all resistances connected to the summing junc-
tion. In this instance:

Maximum Current = ±2.5 Amp
Amplifier Voltage range = ±10 Volts

We lack a velocity full-scale. The maximum acceleration and
stroke limits (135 g, 100 mil) ‘cross’ at 114.95 Hz, where the
velocity would be 72.225 IPS. We will use a full-scale of 75 IPS
for this model.

Step 1. Draw a “First-Pass” unscaled circuit diagram for the
shaker simulation. This assures that all of the pertinent vari-
ables are present and can be computed. Be certain that any
variable to be monitored is the output of an amplifier, not a pot.
Verify the stability of the circuit by counting amplifiers within
each closed loop; (in general) there should be an odd number,
indicating a stabilizing “negative feedback” within that loop.
Be very certain that any given variable is only computed in one
place in the circuit; don’t depend on two separate computa-
tions to arrive at the same conclusion!

You will note from the circuit below that the electrical drive
circuit experiences a ‘reflection’ of the mechanical system
being vibrated. At ‘package’ resonances the input impedance
will rise due to the back EMF; this reduces the coil current

which, in turn, reduces the applied force just as in a real shaker
application.

Step 2. Simplify the circuit by eliminating variables that are
not explicitly needed for the study. In particular, minimize the
order of differentiation applied to any one variable; this will
conserve dynamic range. As an example, you will note that the
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same constant. Wherever an integrator receives an input di-
rectly from another amplifier, insert a pot (as shown in two
places) and assign a coefficient of 1/β to it. Ensuing steps will
disclose why you should make these additions now.

Step 4. Assign the desired physical units to the output of
each amplifier and perform a dimensional analysis to deter-

di/dt term has been eliminated by allowing an integrator to
provide the necessary voltage summation. If the acceleration
were not a desired output of the simulation, this same approach
would have been applied to the d2x/dt2 term. Sometimes an
amplifier can be saved if you are willing to make do with the
negative of a desired input or output. We made this choice with
the ecoil signal, but labored to assure that the ein, i, Fr, x, and
d2x/dt2 signals were all of positive sense. Make a concerted
effort to minimize the amount of hardware employed at this
stage . . . you will always find a need for those undeclared am-
plifiers and potentiometers when later ‘milking’ your model!

Step 3. Assign the arbitrary voltage gain β to all integrators.
Divide the coefficient of any pot ‘feeding’ an integrator by this

mine the required physical units of each coefficient. Treat the
added gain factors β as dimensionless. Recall that the output
of an integrator has the units of its input multiplied by seconds.
Compare the coefficient units with those planned in step 3 and
note all potentiometers with a unit disagreement (six found
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here). These coefficients will have to be modified to provide
dimensional consistency with the selected output units.

Step 5. Correct the erroneous coefficient entries detected in
step 4 (as shown here at six places). Note that such coefficient
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revision is rarely required when basic ISO physical units are
consistently selected for each amplifier output. They are in-
evitable when ye olde English units are chosen (as they always
were 30 years ago)!

Step 6. Divide each amplifier’s output by its full scale value
and amend coefficient values for those pots between amplifi-

ers with two different full-scale numbers. The amended value
is equal to the original coefficient multiplied by the numeri-
cal full-scale of the signal at the pot’s input and divided by the
numerical full-scale output of the amplifier ‘fed’ by the pot (as
shown at seven highlighted locations).

Step 7. Apply the numeric values (or range of values) to ev-
ery coefficient in the diagram. Pot settings must fall between

0 and 1. Larger coefficient values preceding inverters and sum-
mers require using amplifier input gain (i.e. ×10) so that the
pot setting may be reduced to less than 1. Integrators (see step
8) offer another option. Pot settings less than 0.05 should be
avoided as they lead to poor signal/noise ratio. If all coefficients
cannot be satisfactorily rectified, return to step 6 and change
the full-scale values involved. Note that our simulation is sat-
isfactory with regard to all coefficients except the highlighted
four which “feed” integrators.

Step 8. Select the required gain β of the integrators. Choose
a value that allows all of the potentiometers ‘feeding’ integra-
tors to be set to a value of 1 or less. In our example, a gain of β
= 1000 satisfies this requirement for two of our three integra-
tors. The third (upper-right) is also satisfied by this value when
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the higher gain (×10) inputs of that integrator are used (as
shown).

Analog computers provide a limited set of integrator β gains
(normally 1/10, 1, 10 and 100). They are selected by the
computer’s Time Scale rotary switch. This selector changes the
capacitor value used in all of the integrators simultaneously.
This provides (×1 input) integrator gain of 1 Sec /Rx1C, numeri-
cally equal to the Time Scale Switch setting.

If your required β is equal to the Time Scale setting, your
simulation will run in “real-time” behaving just like the physi-
cal hardware it models. If the required β is not available, the
simulation can still be run but its responses will be Time Scale
/ β as fast as those of the modeled hardware. Analogs that run
in this manner are said to be time-scaled.

In this example, a β of 1000 is required and the maximum
available Time Scale is 100. Set the pots as though the required
β gain was available and the model will run in 1/10 real-time.
That is, the simulation will take 10 times as long to do some-
thing as the actual shaker does. Hence all model frequencies
will be 1/10 of those in “real-life.”

The requirement to run this model more slowly than real life
is the result of including the desired dx2/dt2 term in concert
with the selected full-scale values. (Recall dx2/dt2 = (2πf)2x for
simple sinusoidal motion at frequency f.) This combination
required a broader voltage dynamic range than could be accom-
modated in real-time given the limited choices of capacitors
available, the restriction that only one capacitor choice must
be made globally for all integrators and that the simulation
must run within a fixed voltage range. By reducing the fre-
quency, computational voltage range was recovered through
time scaling.

Time scaling is also useful in its own right. We often “slowed
down” simulated transient events like automotive barrier-
crashes to allow more detailed analysis of the events that tran-
spired than our available “real-time” instruments could follow.
We also “time compressed” some analyses to bring low fre-
quency terms into the range of human hearing. Problems in-
volving partial differential equations were studied using two
analog computers running at vastly different time scales; the
spatial derivative computations were run rapidly (and repeti-
tively) and used as a “lookup table” for the slower running
temporal simulation.

Step 8a. Elect to construct the analog using IC operational
amplifiers and discrete resistors and capacitors. In this in-
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stance, each integrator may have a unique gain β. Coefficients
that will not be varied during the model study do not require

a potentiometer. Instead, the required input gain is set by fixed
resistor selection. This figure shows three different integrator
gains, all of which can easily be achieved so that the analog
will run in real-time. As an example, the gain of 5236 can be
achieved using a 0.1 µF capacitor and a 1.91 kΩ resistor while
the gain of 515.2 calls for 1.0 µF and 1.96 kΩ. Note the change
in the ‘feedback’ coefficient around the upper-right integrator;
this reflects the selected integrator gain. A ‘jumper’ has been
planned for to allow the shaker to be driven by the ein input or
examined with its coil unterminated in a ‘pluck’ test. Figure 5
illustrates a schematic generated from this planning diagram
and Figure 6 illustrates the physical arrangement of its parts.

The circuit of Figures 5 and 6 may be thought of as a hard-
ware subroutine, a component of a larger model. Figure 7 rep-
resents the shaker simulation subroutine as a “black box.” Fig-

Figure 5. Schematic diagram for the shaker simulation.

Figure 6. The circuit of Figure 5 was constructed from two integrated
circuits (with one amplifier left over!) on a shop-built prototyping rig.
The rig contains precision power supplies and a convenient way to
interface BNC connectors with the circuit. Commercial development
boards, such as that shown, can also be used to build small circuits.
Planning the component placement before patching is always a good
idea . . . note the pictorial layout.
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Figure 7. Black box representation of the shaker simulation circuit show-
ing scaled inputs and outputs. This circuit may now be used as a hard-
ware ‘subroutine’ and incorporated in larger simulations.
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Figure 8. ‘Pluck’ testing an LDS model V-203 shaker. The finger de-
presses the table against its limit stop, then releases it abruptly. The
voltage generated by the shaker coil is measured with a high imped-
ance instrument. Comparative spectral measurements made between
a bare table and one loaded with a known mass permit identifying the
suspension parameters.

Figure 9. Setup for a simulated pluck test of the shaker model. The ecoil
jumper is left open, so that no current flows through the coil. The –ecoil
output allows the coil’s back-emf to be monitored while the shaker table
is mechanically excited. With the switch in the “hold at stroke limit”
position, the potentiometer is adjusted until the X output reaches 10
volts (corresponding to 100 mils), indicating the shaker suspension is
at its extreme limit. (This should require a value of 3.308 Volts corre-
sponding to 1.654 lb.) When the switch is moved to the ‘release’ posi-
tion, this simulated force is removed from the shaker table, which is
then free to vibrate. The 2 Ma g pot is used to simulate attachment of a
mass to the shaker table. Set this pot to 0 for a “bare-table” test; use a
value of 0.1376 to simulate the 31.27 gram accelerometer which I used
in the hardware test of the September 1997 article.

Figure 10. Pluck test measurements made with bare (black) and mass-
loaded (red) table. a) Real hardware in time domain. b) Analog model
in time domain.
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ures 8 through 14 illustrate various experiments performed
upon this analog element and compare the measured results
against those of “real hardware.” Please note the simplicity
with which additional modeled elements are “boot-strapped”
to the shaker circuit.

Better Ain’t Spelled Digital!
The experimental expansion of Figures 9, 12 and 14 present

no difficulty for the analog practitioner. In contrast, digital
simulations are always plagued by issues of sample rate and
equation sequencing. To bring home these points, you might
try solving Equations (5) and (6) in a spreadsheet such as Ex-
cel®, using the scaled diagram of Step 8a as a guide.

Create a column for time t and each of the seven dependent
variables. Enter t=0 and the initial condition for i, dX/dt and
X in the first row. Solve for the remaining dependent variables
in this row in terms of the initial conditions so that a complete
set of “time=0” variables is available. (Start by assuming Fr and
ein equal zero.) In the second row, set t equal to its first row
value plus a constant increment dt. Implement a simple (rect-
angular) integration for i, dX/dt and X in terms of dt and the
variables from the preceding row. Copy (actually Fill ⇒  Down)
the equations for ein, ecoil, Fr and d2X/dt2. Select the entire row
and use Fill ⇒  Down to provide about 500 sample points.

Run a simple test using an initial condition of 1 for X (actu-
ally for X/100 mil) and 0 for i and dX/dt. Start with a dt value
of 100 µsec (.0001). Make a simple scatter plot of all depen-
dent variables against time. If your coding is correct, you will
be rewarded by smooth exponentially decaying sinusoids for
all variables, with the activity ceasing in about 1 1/2 cycles in
50 msec. Now make the dt steps courser (0.0002, 0.0003, etc.).
Things will be fine until you reach dt=0.001, at which point

Figure 12. Simulation setup for a coil impedance measurement in
“blocked table” and “bare table” conditions. The ecoil jumper is closed
so that current, i, flows though the coil and drives the shaker. The ein
input is driven with white noise and the impedance ratio ein/I is mea-
sured as a transfer function. When the switch is in the “table blocked”
position, a force proportional to the negative of displacement X is fed
back as the restraining force Fr. The gain shown simulates the restrain-
ing bracket as a 1000 lb/in spring.
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Figure 11. Mechanical configurations for traditional coil impedance
tests. The unit on the left is unrestrained, the shaker on the right has
its table motion blocked by a bracket.
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Figure 13. Coil impedance test measurements showing table ‘blocked’
(black) and free conditions (red). Top figure illustrates actual shaker,
bottom figure shows measurements from the analog simulation.

Figure 14. Food for thought and personal study! This scaled circuit
simulates the “base-shake” of a single degree-of-freedom system at-
tached to the shaker. Y and its derivatives have the same scale factors
as those of the shaker simulation. Enter Mg in pound, K in pound per
inch and C in pound-second per inch. By adding two more amplifiers
to this circuit, you can create another hardware ‘subroutine’ suitable
to stack a chain of spring/mass/damper systems on the shaker.
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the simulation will ‘blowup’ due to a sample-rate induced in-
stability of the current equation! Analog computers never in-
troduced such artifacts.

Return dt to 0.0001 and try “boot-strapping” additional equa-
tions for the appended components of Figures 9, 12 and 14. You
should have no problem with the experiment of Figures 12 and
14, but that of Figure 9 will defy you! Excel will complain about
a “Circular Reference” and offer to help you resolve this issue
by editing or performing an iterative computation to a standard
you cannot control. (Thirty years ago Mimic complained of an
“algebraic loop” and offered the same help!) You’re far better
off to reject the offered iterative solution and recast the equa-
tion (using your Control Systems text as a guide). You have just
been foisted upon the horns of an “equation sequencing” prob-
lem, never encountered in continuous signal analog systems.
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Thoughts in Closure
This article has merely scratched the surface of an impor-

tant body of knowledge in severe danger of being lost. We have
only discussed the most basic analog ‘coding’ of ordinary, lin-
ear differential equations with constant coefficients. While the
analog computer handled such studies with elan, it really made
heavy contributions in the understanding of nonlinear and
time-variant systems, as well as those described by partial dif-
ferential equations.

This example has not discussed the powerful mode control
that allowed precise initial conditions to be specified for ev-
ery integrator (and, therefore, for every variable in the simula-
tion). Mode control also provided a precise means of verifying
every potentiometer setting (pot set) and to hold the simula-
tion, ‘freezing’ all variables at a specific instant in time. Mode
control was extended in later computers to include repetitive
operation. In ‘Rep-Op’ a precise time sequence consisting of a
brief interval where initial conditions were applied followed
by a specified duration of simulation operation was executed
repetitively. This allowed various signals to be monitored on
an oscilloscope while initial conditions and coefficients were
varied.

We have not discussed any of the standard nonlinear analog
components such as diodes, amplitude comparators, relays,
track/store amplifiers, the “1/4-square” signal multiplier
(which also provided square and square-root functions) or the
diode function generator which provided graphically program-
mable nonlinear input/output amplitude relationships. Nor
have we touched on the accompanying parallel synchronous
logic circuits that augmented later machines.

Learning to use an analog computer forced the practitioner
to cross the (unnecessary) boundaries between engineering
disciplines; this may be its greatest virtue. More than a little
dose of ‘EE’ was infused in this Mechanical Engineer by con-
tact with the analog computer and this has stood me in good
stead throughout my career. Creating a real physical entity (a
circuit) governed by a particular set of equations and interact-
ing with it provides unique insight into those mathematical
statements. There is no better way to develop a “gut feel” for
the interplay between physics and mathematics than to expe-
rience such an interaction. The analog computer was a power-
ful interdisciplinary teaching tool; its obsolescence is mourned
by many educators in a variety of fields.

The continuous-signal analog computer interfaced naturally
with measurements from existing mechanical hardware. At
General Motors Proving Grounds we routinely used shakers
and sensors to integrate existing automotive chassis with com-
puter-modeled components. A frequent “rite-of-passage” found
engine mounts being optimized by ‘tweaking’ coefficient pots
in a (rigid body) analog simulation of the engine on its elastic
mounts. This real-time simulation was driven by mount-point
acceleration and force measurements and provided the drive
signals to multiple shakers at the engine attachment points.
The chassis had no ‘real’ engine, only that inferred by the com-
puter. A “calibrated posterior” rode the car on a motored dy-
namometer with simulated road inputs and conferred with the
‘tweaker’ by radio. In this manner, many old engines found
comfortable homes in new chassis and vice versa.

The analog machines had a short courtship with the digital
computer giving rise to the very powerful but short-lived hy-
brid computer, perhaps the best real-time simulation tool ever
devised by man. You can learn a lot more about the history and
application of these old marvels at Doug Coward’s Analog
Computer Museum (www.best.com/~dcoward/analog/index.
html). Doug includes a time-line of related inventions from 87
BC until the year of my graduation. He also provides a very
complete reference bibliography. Most of the pertinent refer-
ence texts he lists are now out of print. I recently purchased
several of these as used tomes in good condition at reasonable
prices from Powell’s Books (www.powells.com).

While these grand old machines are now passé, the lessons
they offer can still be experienced today. One has merely to buy
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SignalCalc® Mobilyzer is a modern-architecture Dynamic
Signal Analyzer that distributes the processing load over mul-
tiple DSPs and CPUs to achieve a cost-effective signal analy-
sis of the highest quality. A Mobilyzer chassis interfaces to an
ordinary PC running Windows® 95, 98, 2000 or NT via a stan-
dard Ethernet network cable. The lightly-loaded computer
becomes a viewport into the activity and content of dynamic
signals.

Mobilyzer systems are offered in three chassis sizes: 4 chan-
nel, 16 channel and custom high-count systems. Within each
size, many input/output configurations are possible. Each
Mobilyzer chassis contains a Pentium CPU processor control-
ling multiple Digital Signal Processor (DSP) modules. Inputs
may be differential or single-ended with AC, DC or ICP cou-
pling. Signal generators provide sine, random, burst-random,
pseudorandom, chirp and other waveforms of up to ±10 Volts.
Multiple tachometer channels serve machinery analysis.

The instrument provides FFT (with zoom), octave and 1/3
octave analysis, order-tracking, MIMO, shock response spec-
tra, correlation, synchronous averaging, histograms, waterfall
and spectrogram presentations and disk-recording and play-
back. It shares the highly intuitive Windows interface of other
SignalCalc analyzers and is fully ActiveX compliant.

The experimental measurements illustrated and utilized for

The Data Physics Mobilyzer ®

The author can be contacted at: lang@data physics.com.

this article were made with the four-channel SignalCalc
Mobilyzer shown above. More information is available at www.
dataphysics.com.

power supplies, a wire-patchable prototyping board, a hand-
ful of “op-amp chips” and some precision resistors and capaci-
tors (see Figure 6). These are but a few keystrokes away at
www.digikey.com or www.mouser.com, for example. The au-
thor fervently hopes the technically curious and foresighted
will recognize that this special area of our history has much to

teach in ensuing years and that the best way to learn is by
doing. Try a little of this “old stuff,” I promise you’ll learn
something new!

COVER

Our cover shows an 1889 woodcut of a portion of Charles
Babbage’s first Difference Engine, an amazing machine built to
automate the computation of mathematical and navigational
tables. This milestone in the history of computing machines
was the direct outgrowth of a frustrated exchange between
Babbage (1791-1871) and John Herschel, a noted astronomer of
the time. The two friends were members of the Astronomical
Society of London and labored together during the summer of
1821, checking the hand calculations of two independent “hu-
man computers” who had prepared sight-reduction tables de-
scribing the true positions of all of the Greenwich stars. These
were fundamental navigational aides, allowing latitude to be
deduced from an angle measured with a sextant. The calcula-
tions were ponderous and each discrepancy between table-
pairs had to be rectified by arduous recomputation. Many er-
rors were found, leading Herschel to exclaim in exasperation,
“I wish to God these tables had been calculated by steam!”
Babbage replied that he thought they could.

Babbage made good on his prognostication over the ensuing
37 years. While his invention was driven by a hand crank rather

than by steam, he produced a machine that could calculate pre-
cise table values for a broad range of problems. The complex
mechanism was based on the method of Finite Differences with
its roots in differential calculus. It was programmable by com-
ponent arrangement and incorporated mechanical memory
elements retaining sub-step calculations. Parallel aspects of the
calculation took place simultaneously, paced by a mechanical
operating ‘clock’ input. Each machine cycle required four al-
ternate-direction half rotations of the hand crank. Our wood-
cut shows about 1/7 of the total machine, that part responsible
for the basic computation. This element was finished in 1832
and still functions today in the Science Museum in London.

As with John Harrison, whose chronometer solved the lon-
gitude enigma, Charles Babbage was treated poorly by the Brit-
ish Crown. He was never granted a patent for his efforts nor
awarded full measure of the government support monies prom-
ised over the years. His saga provides further evidence that the
most difficult problems to solve are not technical, they are
political. (Illustration © Bettman/CORBIS)


